首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23911篇
  免费   1633篇
  国内免费   14篇
  2023年   120篇
  2022年   105篇
  2021年   594篇
  2020年   382篇
  2019年   502篇
  2018年   658篇
  2017年   538篇
  2016年   874篇
  2015年   1296篇
  2014年   1435篇
  2013年   1800篇
  2012年   2085篇
  2011年   2045篇
  2010年   1270篇
  2009年   1080篇
  2008年   1474篇
  2007年   1389篇
  2006年   1277篇
  2005年   1163篇
  2004年   1049篇
  2003年   1008篇
  2002年   834篇
  2001年   187篇
  2000年   195篇
  1999年   184篇
  1998年   153篇
  1997年   126篇
  1996年   95篇
  1995年   102篇
  1994年   109篇
  1993年   102篇
  1992年   71篇
  1991年   81篇
  1990年   78篇
  1989年   59篇
  1988年   72篇
  1987年   74篇
  1986年   66篇
  1985年   82篇
  1984年   60篇
  1983年   59篇
  1982年   48篇
  1981年   52篇
  1980年   43篇
  1979年   50篇
  1978年   42篇
  1977年   40篇
  1976年   36篇
  1974年   29篇
  1973年   34篇
排序方式: 共有10000条查询结果,搜索用时 625 毫秒
11.
12.
13.
14.
A metabolomics approach for prediction of bacteremic sepsis in patients in the emergency room (ER) was investigated. In a prospective study, whole blood samples from 65 patients with bacteremic sepsis and 49 ER controls were compared. The blood samples were analyzed using gas chromatography coupled to time-of-flight mass spectrometry. Multivariate and logistic regression modeling using metabolites identified by chromatography or using conventional laboratory parameters and clinical scores of infection were employed. A predictive model of bacteremic sepsis with 107 metabolites was developed and validated. The number of metabolites was reduced stepwise until identifying a set of 6 predictive metabolites. A 6-metabolite predictive logistic regression model showed a sensitivity of 0.91(95% CI 0.69–0.99) and a specificity 0.84 (95% CI 0.58–0.94) with an AUC of 0.93 (95% CI 0.89–1.01). Myristic acid was the single most predictive metabolite, with a sensitivity of 1.00 (95% CI 0.85–1.00) and specificity of 0.95 (95% CI 0.74–0.99), and performed better than various combinations of conventional laboratory and clinical parameters. We found that a metabolomics approach for analysis of acute blood samples was useful for identification of patients with bacteremic sepsis. Metabolomics should be further evaluated as a new tool for infection diagnostics.  相似文献   
15.
Neuropeptide Y (NPY) is an evolutionarily conserved neurosecretory molecule implicated in a diverse complement of functions across taxa and in regulating feeding behavior and reproductive maturation in Octopus. However, little is known about the precise molecular circuitry of NPY-mediated behaviors and physiological processes, which likely involve a complex interaction of multiple signal molecules in specific brain regions. Here, we examined the expression of NPY throughout the Octopus central nervous system. The sequence analysis of Octopus NPY precursor confirmed the presence of both, signal peptide and putative active peptides, which are highly conserved across bilaterians. In situ hybridization revealed distinct expression of NPY in specialized compartments, including potential “integration centers,” where visual, tactile, and other behavioral circuitries converge. These centers integrating separate circuits may maintain and modulate learning and memory or other behaviors not yet attributed to NPY-dependent modulation in Octopus. Extrasomatic localization of NPY mRNA in the neurites of specific neuron populations in the brain suggests a potential demand for immediate translation at synapses and a crucial temporal role for NPY in these cell populations. We also documented the presence of NPY mRNA in a small cell population in the olfactory lobe, which is a component of the Octopus feeding and reproductive control centers. However, the molecular mapping of NPY expression only partially overlapped with that produced by immunohistochemistry in previous studies. Our study provides a precise molecular map of NPY mRNA expression that can be used to design and test future hypotheses about molecular signaling in various Octopus behaviors.  相似文献   
16.
17.
18.
19.
20.
Readouts that define the physiological distributions of drugs in tissues are an unmet challenge and at best imprecise, but are needed in order to understand both the pharmacokinetic and pharmacodynamic properties associated with efficacy. Here we demonstrate that it is feasible to follow the in vivo transport of unlabeled drugs within specific organ and tissue compartments on a platform that applies MALDI imaging mass spectrometry to tissue sections characterized with high definition histology. We have tracked and quantified the distribution of an inhaled reference compound, tiotropium, within the lungs of dosed rats, using systematic point by point MS and MS/MS sampling at 200 µm intervals. By comparing drug ion distribution patterns in adjacent tissue sections, we observed that within 15 min following exposure, tiotropium parent MS ions (mass-to-charge; m/z 392.1) and fragmented daughter MS/MS ions (m/z 170.1 and 152.1) were dispersed in a concentration gradient (80 fmol-5 pmol) away from the central airways into the lung parenchyma and pleura. These drug levels agreed well with amounts detected in lung compartments by chemical extraction. Moreover, the simultaneous global definition of molecular ion signatures localized within 2-D tissue space provides accurate assignment of ion identities within histological landmarks, providing context to dynamic biological processes occurring at sites of drug presence. Our results highlight an important emerging technology allowing specific high resolution identification of unlabeled drugs at sites of in vivo uptake and retention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号